Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Immunity ; 56(11): 2602-2620.e10, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37967532

RESUMEN

Human cytomegalovirus (HCMV) can cause severe diseases in fetuses, newborns, and immunocompromised individuals. Currently, no vaccines are approved, and treatment options are limited. Here, we analyzed the human B cell response of four HCMV top neutralizers from a cohort of 9,000 individuals. By single-cell analyses of memory B cells targeting the pentameric and trimeric HCMV surface complexes, we identified vulnerable sites on the shared gH/gL subunits as well as complex-specific subunits UL128/130/131A and gO. Using high-resolution cryogenic electron microscopy, we revealed the structural basis of the neutralization mechanisms of antibodies targeting various binding sites. Moreover, we identified highly potent antibodies that neutralized a broad spectrum of HCMV strains, including primary clinical isolates, that outperform known antibodies used in clinical trials. Our study provides a deep understanding of the mechanisms of HCMV neutralization and identifies promising antibody candidates to prevent and treat HCMV infection.


Asunto(s)
Citomegalovirus , Proteínas del Envoltorio Viral , Recién Nacido , Humanos , Glicoproteínas de Membrana , Anticuerpos Neutralizantes , Células B de Memoria , Anticuerpos Antivirales , Análisis de la Célula Individual
2.
Biotechniques ; 75(5): 183-194, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37846844

RESUMEN

Working with recent isolates of human cytomegalovirus (HCMV) is complicated by their strictly cell-associated growth with lack of infectivity in the supernatant. Adaptation to cell-free growth is associated with disruption of the viral UL128 gene locus. The authors transduced fibroblasts with a lentiviral vector encoding UL128-specific-shRNA to allow the release of cell-free infectivity without genetic alteration. Transduced cells were cocultured with fibroblasts containing cell-associated isolates, and knockdown of the UL128 protein was validated by immunoblotting. Cell-free infectivity increased 1000-fold in isolate cocultures with UL128-shRNA compared with controls, and virions could be purified by density gradients. Transduced fibroblasts also allowed direct isolation of HCMV from a clinical specimen and cell-free transfer to other cell types. In conclusion, UL128-shRNA-transduced fibroblasts allow applications previously unsuitable for recent isolates.


Asunto(s)
Citomegalovirus , Proteínas del Envoltorio Viral , Humanos , Citomegalovirus/genética , Proteínas del Envoltorio Viral/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Células Cultivadas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Fibroblastos/metabolismo
3.
J Infect Dis ; 226(9): 1667-1677, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35970817

RESUMEN

BACKGROUND: Human cytomegalovirus (HCMV) is the most common infectious complication of organ transplantation and cause of birth defects worldwide. There are limited therapeutic options and no licensed vaccine to prevent HCMV infection or disease. To inform development of HCMV antibody-based interventions, a previous study identified individuals with potent and broad plasma HCMV-neutralizing activity, termed elite neutralizers (ENs), from a cohort of HCMV-seropositive (SP) blood donors. However, the specificities and functions of plasma antibodies associated with EN status remained undefined. METHODS: We sought to determine the plasma antibody specificities, breadth, and Fc-mediated antibody effector functions associated with the most potent HCMV-neutralizing responses in plasma from ENs (n = 25) relative to that from SP donors (n = 19). We measured antibody binding against various HCMV strains and glycoprotein targets and evaluated Fc-mediated effector functions, antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent cellular phagocytosis (ADCP). RESULTS: We demonstrate that ENs have elevated immunoglobulin G binding responses against multiple viral glycoproteins, relative to SP donors. Our study also revealed potent HCMV-specific antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis activity of plasma from ENs. CONCLUSIONS: We conclude that antibody responses against multiple glycoprotein specificities may be needed to achieve potent plasma neutralization and that potently HCMV elite-neutralizing plasma antibodies can also mediate polyfunctional responses.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Humanos , Inmunoglobulina G , Anticuerpos Neutralizantes , Formación de Anticuerpos , Anticuerpos Antivirales , Proteínas del Envoltorio Viral
4.
Viruses ; 14(7)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35891541

RESUMEN

Polymorphonuclear leukocytes (PMNs) presumably transmit human cytomegalovirus (HCMV) between endothelial cells in blood vessels and thereby facilitate spread to peripheral organs. We aimed to identify viral components that contribute to PMN-mediated transmission and test the hypothesis that cellular adhesion molecules shield transmission sites from entry inhibitors. Stop codons were introduced into the genome of HCMV strain Merlin to delete pUL74 of the trimeric and pUL128 of the pentameric glycoprotein complex and the tegument proteins pp65 and pp71. Mutants were analyzed regarding virus uptake by PMNs and transfer of infection to endothelial cells. Cellular adhesion molecules were evaluated for their contribution to virus transmission using function-blocking antibodies, and hits were further analyzed regarding shielding against inhibitors of virus entry. The viral proteins pUL128, pp65, and pp71 were required for efficient PMN-mediated transmission, whereas pUL74 was dispensable. On the cellular side, the blocking of the αLß2-integrin LFA-1 reduced virus transfer by 50% and allowed entry inhibitors to reduce it further by 30%. In conclusion, these data show that PMN-mediated transmission depends on the pentameric complex and an intact tegument and supports the idea of a virological synapse that promotes this dissemination mode both directly and via immune evasion.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Células Endoteliales/metabolismo , Humanos , Neutrófilos/metabolismo , Proteínas del Envoltorio Viral/genética
5.
J Virol Methods ; 305: 114537, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35526667

RESUMEN

Due to strictly cell-associated growth, experiments requiring cell-free virus are not applicable to recent clinical HCMV isolates to date. On the other hand, adaptation to cell-free growth is associated with undesirable changes in the viral gene regions RL13 and UL128. We had previously found that siRNA-mediated reduction of UL128 expression allowed transient release of cell-free virus by clinical isolates, and now hypothesized that virus yield could be further increased by additional knockdown of RL13. Despite the extensive polymorphism of RL13, effective RL13-specific siRNAs could be designed for three recent isolates and the Merlin strain. Knockdown efficiency was demonstrated at the protein level with a Merlin variant expressing V5-tagged pRL13. Knockdown of RL13 alone did not result in measurable release of cell-free virus, but combined knockdown of RL13 and UL128 increased infectivity in cell-free supernatants by a factor of 10-2000 compared to knockdown of UL128 alone. These supernatants could be used in dose-response assays to compare the effect of a neutralizing antibody on the various HCMV isolates. In summary, combined knockdown of RL13 and UL128 by specific siRNAs allows reliable release of cell-free infectivity from otherwise strictly cell-associated HCMV isolates without the need to modify the viral genome.


Asunto(s)
Citomegalovirus , Neurofibromina 2 , Línea Celular , Citomegalovirus/genética , Genes Virales , Genoma Viral , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Proteínas del Envoltorio Viral/genética
6.
Viruses ; 13(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34578361

RESUMEN

Cell-free human cytomegalovirus (HCMV) can be inhibited by a soluble form of the cellular HCMV-receptor PDGFRα, resembling neutralization by antibodies. The cell-associated growth of recent HCMV isolates, however, is resistant against antibodies. We investigated whether PDGFRα-derivatives can inhibit this transmission mode. A protein containing the extracellular PDGFRα-domain and 40-mer peptides derived therefrom were tested regarding the inhibition of the cell-associated HCMV strain Merlin-pAL1502, hits were validated with recent isolates, and the most effective peptide was modified to increase its potency. The modified peptide was further analyzed regarding its mode of action on the virion level. While full-length PDGFRα failed to inhibit HCMV isolates, three peptides significantly reduced virus growth. A 30-mer version of the lead peptide (GD30) proved even more effective against the cell-free virus, and this effect was HCMV-specific and depended on the viral glycoprotein O. In cell-associated spread, GD30 reduced both the number of transferred particles and their penetration. This effect was reversible after peptide removal, which allowed the synchronized analysis of particle transfer, showing that two virions per hour were transferred to neighboring cells and one virion was sufficient for infection. In conclusion, PDGFRα-derived peptides are novel inhibitors of the cell-associated spread of HCMV and facilitate the investigation of this transmission mode.


Asunto(s)
Citomegalovirus/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/química , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/farmacología , Infecciones por Citomegalovirus/virología , Humanos , Glicoproteínas de Membrana/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Virión/metabolismo , Internalización del Virus/efectos de los fármacos
7.
Viruses ; 13(6)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201364

RESUMEN

The human cytomegalovirus (HCMV) infects fibroblasts via an interaction of its envelope glycoprotein gO with the cellular platelet-derived growth factor receptor alpha (PDGFRα), and soluble derivatives of this receptor can inhibit viral entry. We aimed to select mutants with resistance against PDGFRα-Fc and the PDGFRα-derived peptides GT40 and IK40 to gain insight into the underlying mechanisms and determine the genetic barrier to resistance. An error-prone variant of strain AD169 was propagated in the presence of inhibitors, cell cultures were monitored weekly for signs of increased viral growth, and selected viruses were tested regarding their sensitivity to the inhibitor. Resistant virus was analyzed by DNA sequencing, candidate mutations were transferred into AD169 clone pHB5 by seamless mutagenesis, and reconstituted virus was again tested for loss of sensitivity by dose-response analyses. An S48Y mutation in gO was identified that conferred a three-fold loss of sensitivity against PDGFRα-Fc, a combination of mutations in gO, gH, gB and gN reduced sensitivity to GT40 by factor 4, and no loss of sensitivity occurred with IK40. The resistance-conferring mutations support the notion that PDGFRα-Fc and GT40 perturb the interaction of gO with its receptor, but the relatively weak effect indicates a high genetic barrier to resistance.


Asunto(s)
Citomegalovirus/efectos de los fármacos , Citomegalovirus/genética , Farmacorresistencia Viral/genética , Mutación , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/farmacología , Internalización del Virus/efectos de los fármacos , Línea Celular , Citomegalovirus/aislamiento & purificación , Infecciones por Citomegalovirus , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Fibroblastos/efectos de los fármacos , Fibroblastos/virología , Humanos
8.
Med Microbiol Immunol ; 210(4): 197-209, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34091753

RESUMEN

Polymorphonuclear leukocytes (PMNs) are regarded as vehicles for the hematogenous dissemination of human cytomegalovirus (HCMV). In cell culture, this concept has been validated with cell-free laboratory strains but not yet with clinical HCMV isolates that grow strictly cell-associated. We, therefore, aimed to evaluate whether PMNs can also transmit such isolates from initially infected fibroblasts to other cell types, which might further clarify the role of PMNs in HCMV dissemination and provide a model to search for potential inhibitors. PMNs, which have been isolated from HCMV-seronegative individuals, were added for 3 h to fibroblasts infected with recent cell-associated HCMV isolates, then removed and transferred to various recipient cell cultures. The transfer efficiency in the recipient cultures was evaluated by immunofluorescence staining of viral immediate early antigens. Soluble derivatives of the cellular HCMV entry receptor PDGFRα were analyzed for their potential to interfere with this transfer. All of five tested HCMV isolates could be transferred to fibroblasts, endothelial and epithelial cells with transfer rates ranging from 2 to 9%, and the transferred viruses could spread focally in these recipient cells within 1 week. The PDGFRα-derived peptides IK40 and GT40 reduced transfer by 40 and 70% when added during the uptake step. However, when added during the transfer step, only IK40 was effective, inhibiting transmission by 20% on endothelial cells and 50-60% on epithelial cells and fibroblasts. These findings further corroborate the assumption of cell-associated HCMV dissemination by PMNs and demonstrate that it is possible to inhibit this transmission mode.


Asunto(s)
Infecciones por Citomegalovirus/transmisión , Infecciones por Citomegalovirus/virología , Citomegalovirus/efectos de los fármacos , Citomegalovirus/fisiología , Neutrófilos/virología , Péptidos/farmacología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Antígenos Virales/metabolismo , Antivirales/farmacología , Línea Celular , Citomegalovirus/aislamiento & purificación , Células Endoteliales/virología , Células Epiteliales/virología , Fibroblastos/virología , Humanos , Péptidos/química , Internalización del Virus/efectos de los fármacos
9.
Viruses ; 13(4)2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918406

RESUMEN

The role of viral envelope glycoproteins, particularly the accessory proteins of trimeric and pentameric gH/gL-complexes, in cell-associated spread of human cytomegalovirus (HCMV) is unclear. We aimed to investigate their contribution in the context of HCMV variants that grow in a strictly cell-associated manner. In the genome of Merlin pAL1502, the glycoproteins gB, gH, gL, gM, and gN were deleted by introducing stop codons, and the mutants were analyzed for viral growth. Merlin and recent HCMV isolates were compared by quantitative immunoblotting for expression of accessory proteins of the trimeric and pentameric gH/gL-complexes, gO and pUL128. Isolates were treated with siRNAs against gO and pUL128 and analyzed regarding focal growth and release of infectious virus. All five tested glycoproteins were essential for growth of Merlin pAL1502. Compared with this model virus, higher gO levels were measured in recent isolates of HCMV, and its knockdown decreased viral growth. Knockdown of pUL128 abrogated the strict cell-association and led to release of infectivity, which allowed cell-free transfer to epithelial cells where the virus grew again strictly cell-associated. We conclude that both trimer and pentamer contribute to cell-associated spread of recent clinical HCMV isolates and downregulation of pentamer can release infectious virus into the supernatant.


Asunto(s)
Citomegalovirus/crecimiento & desarrollo , Citomegalovirus/genética , Células Epiteliales/virología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Citomegalovirus/química , Infecciones por Citomegalovirus/virología , Humanos , Glicoproteínas de Membrana/genética , Mutación , ARN Interferente Pequeño , Internalización del Virus
10.
PLoS Pathog ; 17(3): e1009471, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33780515

RESUMEN

Platelet-derived growth factor receptor alpha (PDGFRα) serves as an entry receptor for the human cytomegalovirus (HCMV), and soluble PDGFRα-Fc can neutralize HCMV at a half-maximal effective concentration (EC50) of about 10 ng/ml. While this indicates a potential for usage as an HCMV entry inhibitor PDGFRα-Fc can also bind the physiological ligands of PDGFRα (PDGFs), which likely interferes with the respective signaling pathways and represents a potential source of side effects. Therefore, we tested the hypothesis that interference with PDGF signaling can be prevented by mutations in PDGFRα-Fc or combinations thereof, without losing the inhibitory potential for HCMV. To this aim, a targeted mutagenesis approach was chosen. The mutations were quantitatively tested in biological assays for interference with PDGF-dependent signaling as well as inhibition of HCMV infection and biochemically for reduced affinity to PDGF-BB, facilitating quantification of PDGFRα-Fc selectivity for HCMV inhibition. Mutation of Ile 139 to Glu and Tyr 206 to Ser strongly reduced the affinity for PDGF-BB and hence interference with PDGF-dependent signaling. Inhibition of HCMV infection was less affected, thus increasing the selectivity by factor 4 and 8, respectively. Surprisingly, the combination of these mutations had an additive effect on binding of PDGF-BB but not on inhibition of HCMV, resulting in a synergistic 260fold increase of selectivity. In addition, a recently reported mutation, Val 242 to Lys, was included in the analysis. PDGFRα-Fc with this mutation was fully effective at blocking HCMV entry and had a drastically reduced affinity for PDGF-BB. Combining Val 242 to Lys with Ile 139 to Glu and/or Tyr 206 to Ser further reduced PDGF ligand binding beyond detection. In conclusion, this targeted mutagenesis approach identified combinations of mutations in PDGFRα-Fc that prevent interference with PDGF-BB but maintain inhibition of HCMV, which qualifies such mutants as candidates for the development of HCMV entry inhibitors.


Asunto(s)
Infecciones por Citomegalovirus , Fragmentos Fc de Inmunoglobulinas , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Becaplermina/efectos de los fármacos , Becaplermina/metabolismo , Citomegalovirus , Fibroblastos , Células HEK293 , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/farmacología , Mutagénesis Sitio-Dirigida , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/química , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/farmacología
11.
Methods Mol Biol ; 2244: 19-38, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33555580

RESUMEN

Human cytomegalovirus is routinely isolated by inoculating fibroblast cultures with clinical specimens suspected of harboring HCMV and then monitoring the cultures for cytopathic effects characteristic of this virus. Initially, such clinical isolates are usually strictly cell-associated, but continued propagation in cell culture increases the capacity of an HCMV isolate to release cell-free infectious progeny. Once cell-free infection is possible, genetically homogenous virus strains can be purified by limiting dilution infections. HCMV strains can differ greatly with regard to the titers that can be achieved, the tropism for certain cell types, and the degree to which nonessential genes have been lost during propagation. As there is no ideal HCMV strain for all purposes, the choice of the most appropriate strain depends on the requirements of the particular experiment or project. In this chapter, we provide information that can serve as a basis for deciding which strain may be the most appropriate for a given experiment.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Citomegalovirus/genética , Tropismo Viral/genética , Citomegalovirus/clasificación , Citomegalovirus/aislamiento & purificación , Infecciones por Citomegalovirus/virología , Fibroblastos/citología , Humanos , Proyectos de Investigación , Tropismo Viral/fisiología , Replicación Viral
12.
J Virol ; 94(18)2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32641474

RESUMEN

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that can cause severe clinical disease in allograft recipients and infants infected in utero Virus-neutralizing antibodies defined in vitro have been proposed to confer protection against HCMV infection, and the virion envelope glycoprotein B (gB) serves as a major target of neutralizing antibodies. The viral fusion protein gB is nonfusogenic on its own and requires glycoproteins H (gH) and L (gL) for membrane fusion, which is in contrast to requirements of related class III fusion proteins, including vesicular stomatitis virus glycoprotein G (VSV-G) or baculovirus gp64. To explore requirements for gB's fusion activity, we generated a set of chimeras composed of gB and VSV-G or gp64, respectively. These gB chimeras were intrinsically fusion active and led to the formation of multinucleated cell syncytia when expressed in the absence of other viral proteins. Utilizing a panel of virus-neutralizing gB-specific monoclonal antibodies (MAbs), we could demonstrate that syncytium formation of the fusogenic gB/VSV-G chimera can be significantly inhibited by only a subset of neutralizing MAbs which target antigenic domain 5 (AD-5) of gB. This observation argues for differential modes of action of neutralizing anti-gB MAbs and suggests that blocking the membrane fusion function of gB could be one mechanism of antibody-mediated virus neutralization. In addition, our data have important implications for the further understanding of the conformation of gB that promotes membrane fusion as well as the identification of structures in AD-5 that could be targeted by antibodies to block this early step in HCMV infection.IMPORTANCE HCMV is a major global health concern, and antiviral chemotherapy remains problematic due to toxicity of available compounds and the emergence of drug-resistant viruses. Thus, an HCMV vaccine represents a priority for both governmental and pharmaceutical research programs. A major obstacle for the development of a vaccine is a lack of knowledge of the nature and specificities of protective immune responses that should be induced by such a vaccine. Glycoprotein B of HCMV is an important target for neutralizing antibodies and, hence, is often included as a component of intervention strategies. By generation of fusion-active gB chimeras, we were able to identify target structures of neutralizing antibodies that potently block gB-induced membrane fusion. This experimental system provides an approach to screen for antibodies that interfere with gB's fusogenic activity. In summary, our data will likely contribute to both rational vaccine design and the development of antibody-based therapies against HCMV.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Citomegalovirus/genética , Proteínas Mutantes Quiméricas/genética , Proteínas del Envoltorio Viral/genética , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Anticuerpos Antivirales/farmacología , Sitios de Unión , Fusión Celular , Línea Celular , Citomegalovirus/efectos de los fármacos , Citomegalovirus/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/virología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/virología , Expresión Génica , Células Gigantes/efectos de los fármacos , Células Gigantes/metabolismo , Células Gigantes/ultraestructura , Células Gigantes/virología , Células HEK293 , Humanos , Ratones , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/metabolismo , Cultivo Primario de Células , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Células del Estroma/virología , Vesiculovirus/genética , Vesiculovirus/metabolismo , Proteínas del Envoltorio Viral/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-32596168

RESUMEN

Based on cell culture data, MHC class I downregulation by HCMV on infected cells has been suggested as a means of immune evasion by this virus. In order to address this issue in vivo, an immunohistochemical analysis of tissue sections from biopsy and autopsy materials of HCMV infected organs was performed. HCMV antigens from the immediate early, early, and late phase of viral replication, and cellular MHC class I molecules were detected simultaneously or in serial sections by immuno-peroxidase and immuno-alkaline phosphatase techniques. Investigated organs included lung, gastrointestinal tract, and placenta. Colocalization of MHC molecules with sites of viral replication as well as MHC expression in individual infected cells were analyzed. To detect immune effector cells at sites of viral replication, leukocytes, CD8+ lymphocytes, and HCMV antigens were stained in serial sections. While strong MHC class I expression was detected in the cells surrounding infected cells, it appeared downregulated in the majority of infected cells themselves, particularly in the late replication phase. Despite significantly reduced MHC class I signals on infected cells, sites of infection were infiltrated by inflammatory cells that consisted predominantly of CD8+ lymphocytes. The extent of inflammatory infiltrates was negatively correlated with the extent of HCMV infected cells. Taken together, our findings indicate that HCMV can downmodulate MHC class I expression in vivo, whereas cytokines originating from infiltrating immune effector cells probably up regulates MHC class I expression in noninfected bystander cells. The presence of cytotoxic lymphocytes in close contact to infected cells may reflect control of viral spread by these cells despite MHC class I downmodulation.


Asunto(s)
Citomegalovirus , Antígenos de Histocompatibilidad Clase I , Replicación Viral , Presentación de Antígeno , Citomegalovirus/fisiología , Regulación hacia Abajo , Humanos
14.
Hum Gene Ther Methods ; 30(4): 122-126, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31280610

RESUMEN

The study of human cytomegalovirus (HCMV) has for long been challenging due to the inability of clinical strains to efficiently proliferate in vitro until adaptive mutations occur. These mutations lead to strains that differ considerably from clinical isolates, many of them showing altered cell tropism, a decrease in cell association and higher susceptibility to an innate immune response. These problems were recently solved by the use of bacterial artificial chromosome (BAC) vectors that allow for the conservation of an intact HCMV genome. Other characteristics that render HCMV difficult for in vitro study are related to its slow replication rate that leads to some constraints in its titration. During the cloning of HCMV into BAC vectors, many groups additionally inserted a fluorescent tag to facilitate the virus characterization. However, the methods used for titration of HCMV-BAC stocks are still relaying on the standard methods that are expensive and/or time consuming. In this study, we assessed the possibility of viral titration by fluorescence-activated cell sorting (FACS), making use of the fluorescent tags that many of the HCMV-BACs hold. We compared viral titers obtained by immunohistochemistry with FACS, a faster and inexpensive technique. We showed that viral titers are comparable using the techniques already mentioned, and that titration by FACS is an efficient, fast, and cost-effective method. The establishment of viral titration of BAC vectors by FACS can further simplify the study of HCMV.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Citomegalovirus/genética , Vectores Genéticos , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética
15.
J Virol ; 93(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31189713

RESUMEN

The development of a vaccine against human cytomegalovirus infection (HCMV) is a high-priority medical goal. The viral pentameric protein complex consisting of glycoprotein H (gH)/gL/UL128-131A (PC) is considered to be an important vaccine component. Its relevance to the induction of a protective antibody response is, however, still a matter of debate. We addressed this issue by using subviral dense bodies (DBs) of HCMV. DBs are exceptionally immunogenic. Laboratory HCMV strain DBs harbor important neutralizing antibody targets, like the glycoproteins B, H, L, M, and N, but they are devoid of the PC. To be able to directly compare the impact of the PC on the levels of neutralizing antibody (NT-abs) responses, a PC-positive variant of the HCMV laboratory strain Towne was established by bacterial artificial chromosome (BAC) mutagenesis (Towne-UL130rep). This strain synthesized PC-positive DBs upon infection of fibroblasts. These DBs were used in side-by-side immunizations with PC-negative Towne DBs. Mouse and rabbit sera were tested to address the impact of the PC on DB immunogenicity. The neutralizing antibody response to PC-positive DBs was superior to that of PC-negative DBs, as tested on fibroblasts, epithelial cells, and endothelial cells and for both animal species used. The experiments revealed the potential of the PC to enhance the antibody response against HCMV. Of particular interest was the finding that PC-positive DBs induced an antibody response that blocked the infection of fibroblasts by a PC-positive viral strain more efficiently than sera following immunizations with PC-negative particles.IMPORTANCE Infections with the human cytomegalovirus (HCMV) may cause severe and even life-threatening disease manifestations in newborns and immunosuppressed individuals. Several strategies for the development of a vaccine against this virus are currently pursued. A critical question in this respect refers to the antigenic composition of a successful vaccine. Using a subviral particle vaccine candidate, we show here that one protein complex of HCMV, termed the pentameric complex (PC), enhances the neutralizing antibody response against viral infection of different cell types. We further show for the first time that this not only relates to the infection of epithelial or endothelial cells; the presence of the PC in the particles also enhanced the neutralizing antibody response against the infection of fibroblasts by HCMV. Together, these findings argue in favor of including the PC in strategies for HCMV vaccine development.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Células Cultivadas , Vacunas contra Citomegalovirus/inmunología , Prepucio/citología , Prepucio/virología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Glicoproteínas de Membrana/inmunología , Ratones , Complejos Multiproteicos/inmunología , Conejos
16.
J Virol ; 93(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30894468

RESUMEN

The human cytomegalovirus (HCMV) glycoprotein complex gH/gL/gO is required for the infection of cells by cell-free virions. It was recently shown that entry into fibroblasts depends on the interaction of gO with the platelet-derived growth factor receptor alpha (PDGFRα). This interaction can be blocked with soluble PDGFRα-Fc, which binds to HCMV virions and inhibits entry. The aim of this study was to identify parts of gO that contribute to PDGFRα binding. In a systematic mutational approach, we targeted potential interaction sites by exchanging conserved clusters of charged amino acids of gO with alanines. To screen for impaired interaction with PDGFRα, virus mutants were tested for sensitivity to inhibition by soluble PDGFRα-Fc. Two mutants with mutations within the N terminus of gO (amino acids 56 to 61 and 117 to 121) were partially resistant to neutralization. To validate whether these mutations impair interaction with PDGFRα-Fc, we compared binding of PDGFRα-Fc to mutant and wild-type virions via quantitative immunofluorescence analysis. PDGFRα-Fc staining intensities were reduced by 30% to 60% with mutant virus particles compared to wild-type particles. In concordance with the reduced binding to the soluble receptor, virus penetration into fibroblasts, which relies on binding to the cellular PDGFRα, was also reduced. In contrast, PDGFRα-independent penetration into endothelial cells was unaltered, demonstrating that the phenotypes of the gO mutant viruses were specific for the interaction with PDGFRα. In conclusion, the mutational screening of gO revealed that the N terminus of gO contributes to efficient spread in fibroblasts by promoting the interaction of virions with its cellular receptor.IMPORTANCE The human cytomegalovirus is a highly prevalent pathogen that can cause severe disease in immunocompromised hosts. Currently used drugs successfully target the viral replication within the host cell, but their use is restricted due to side effects and the development of resistance. An alternative approach is the inhibition of virus entry, for which understanding the details of the initial virus-cell interaction is desirable. As binding of the viral gH/gL/gO complex to the cellular PDGFRα drives infection of fibroblasts, this is a potential target for inhibition of infection. Our mutational mapping approach suggests the N terminus as the receptor binding portion of the protein. The respective mutants were partially resistant to inhibition by PDGFRα-Fc but also attenuated for infection of fibroblasts, indicating that such mutations have little if any benefit for the virus. These findings highlight the potential of targeting the interaction of gH/gL/gO with PDGFRα for therapeutic inhibition of HCMV.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral/genética , Alanina , Línea Celular , Células Cultivadas , Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/virología , Endocitosis , Células Endoteliales/virología , Células Epiteliales/virología , Fibroblastos/virología , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiología , Mutación , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/fisiología , Virión/metabolismo , Internalización del Virus
17.
Front Immunol ; 9: 2734, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524448

RESUMEN

Human cytomegalovirus (HCMV) latency is typically harmless but reactivation can be largely detrimental to immune compromised hosts. We modeled latency and reactivation using a traceable HCMV laboratory strain expressing the Gaussia luciferase reporter gene (HCMV/GLuc) in order to interrogate the viral modulatory effects on the human adaptive immunity. Humanized mice with long-term (more than 17 weeks) steady human T and B cell immune reconstitutions were infected with HCMV/GLuc and 7 weeks later were further treated with granulocyte-colony stimulating factor (G-CSF) to induce viral reactivations. Whole body bio-luminescence imaging analyses clearly differentiated mice with latent viral infections vs. reactivations. Foci of vigorous viral reactivations were detectable in liver, lymph nodes and salivary glands. The number of viral genome copies in various tissues increased upon reactivations and were detectable in sorted human CD14+, CD169+, and CD34+ cells. Compared with non-infected controls, mice after infections and reactivations showed higher thymopoiesis, systemic expansion of Th, CTL, Treg, and Tfh cells and functional antiviral T cell responses. Latent infections promoted vast development of memory CD4+ T cells while reactivations triggered a shift toward effector T cells expressing PD-1. Further, reactivations prompted a marked development of B cells, maturation of IgG+ plasma cells, and HCMV-specific antibody responses. Multivariate statistical methods were employed using T and B cell immune phenotypic profiles obtained with cells from several tissues of individual mice. The data was used to identify combinations of markers that could predict an HCMV infection vs. reactivation status. In spleen, but not in lymph nodes, higher frequencies of effector CD4+ T cells expressing PD-1 were among the factors most suited to distinguish HCMV reactivations from infections. These results suggest a shift from a T cell dominated immune response during latent infections toward an exhausted T cell phenotype and active humoral immune response upon reactivations. In sum, this novel in vivo humanized model combined with advanced analyses highlights a dynamic system clearly specifying the immunological spatial signatures of HCMV latency and reactivations. These signatures can be merged as predictive biomarker clusters that can be applied in the clinical translation of new therapies for the control of HCMV reactivation.


Asunto(s)
Linfocitos B/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/fisiología , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T/inmunología , Regulación hacia Arriba/inmunología , Activación Viral/inmunología , Latencia del Virus/inmunología , Animales , Linfocitos B/patología , Trasplante de Células Madre de Sangre del Cordón Umbilical , Infecciones por Citomegalovirus/patología , Sangre Fetal , Células HEK293 , Xenoinjertos , Humanos , Ratones , Linfocitos T/patología
18.
J Struct Biol ; 204(3): 406-419, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30352275

RESUMEN

Human cytomegalovirus (HCMV) entry into susceptible cells is a fast intricate process that is not fully understood. Although, previous studies explored different aspects of this process by means of biochemical and inhibitors assays, a clear morphological characterization of its steps at the ultrastructural level is still lacking. We attempted to characterize those intermediates involved during HCMV entry by developing a methodological approach that resulted in optimal ultrastructure preservation and allowed for 3D imaging. It involves rapid freezing and cryosubstitution which ensure a clear visibility of membranous leaflets as well as retained membranous continuity. Likewise, it delivered a reproducible optimization of the growth and infection conditions that are pivotal towards maintaining biologically active enriched input virus particles. Data acquisition was achieved through STEM tomography in a 3D context. Indeed, several intermediates that characterize HCMV entry-related events were observed both extra- and intracellularly. Some of the cell-membrane associated viral particles that we referred to as "Pinocchio particles" were morphologically altered in comparison to the cell-free virions. We were also able to characterize intracellular fusion intermediates taking place between the viral envelope and the vesicular membranes. Furthermore, inhibiting actin polymerization by Latrunculin-A enabled us to spot fusion-like intermediates of the viral envelope with the host cell plasma membrane that we did not observe in the untreated infected cells. Our data also suggests that Dyngo-4a; a dynamin-2 inhibitor, does not interfere with the internalization of the HCMV into the host cells as previously deduced.


Asunto(s)
Citomegalovirus/fisiología , Tomografía con Microscopio Electrónico/métodos , Virión/fisiología , Internalización del Virus , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Membrana Celular/virología , Células Cultivadas , Citomegalovirus/ultraestructura , Dinamina II/antagonistas & inhibidores , Dinamina II/metabolismo , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Fibroblastos/virología , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Hidrazonas/farmacología , Imagenología Tridimensional/métodos , Naftoles/farmacología , Reproducibilidad de los Resultados , Virión/ultraestructura
19.
Int J Mol Sci ; 19(10)2018 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279342

RESUMEN

Tetraspanins are suggested to regulate the composition of cell membrane components and control intracellular transport, which leaves them vulnerable to utilization by pathogens such as human papillomaviruses (HPV) and cytomegaloviruses (HCMV) to facilitate host cell entry and subsequent infection. In this study, by means of cellular depletion, the cluster of differentiation (CD) tetraspanins CD9, CD63, and CD151 were found to reduce HPV16 infection in HeLa cells by 50 to 80%. Moreover, we tested recombinant proteins or peptides of specific tetraspanin domains on their effect on the most oncogenic HPV type, HPV16, and HCMV. We found that the C-terminal tails of CD63 and CD151 significantly inhibited infections of both HPV16 and HCMV. Although CD9 was newly identified as a key cellular factor for HPV16 infection, the recombinant CD9 C-terminal peptide had no effect on infection. Based on the determined half-maximal inhibitory concentration (IC50), we classified CD63 and CD151 C-terminal peptides as moderate to potent inhibitors of HPV16 infection in HeLa and HaCaT cells, and in EA.hy926, HFF (human foreskin fibroblast) cells, and HEC-LTT (human endothelial cell-large T antigen and telomerase) cells for HCMV, respectively. These results indicate that HPV16 and HCMV share similar cellular requirements for their entry into host cells and reveal the necessity of the cytoplasmic CD151 and CD63 C-termini in virus infections. Furthermore, this highlights the suitability of these peptides for functional investigation of tetraspanin domains and as inhibitors of pathogen infections.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Papillomavirus Humano 16/fisiología , Tetraspaninas/antagonistas & inhibidores , Citomegalovirus/efectos de los fármacos , Células HeLa , Papillomavirus Humano 16/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Masculino , Péptidos/farmacología , Tetraspaninas/química , Tetraspaninas/metabolismo , Internalización del Virus
20.
Viruses ; 10(9)2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30223489

RESUMEN

Immunoglobulins are only moderately effective for the treatment of human cytomegalovirus (HCMV) infections, possibly due to ineffectiveness against cell-associated virus spread. To overcome this limitation, we aimed to identify individuals with exceptional antibodies in their plasma that can efficiently block the cell-associated spread of HCMV. A Gaussia luciferase-secreting mutant of the cell-associated HCMV strain Merlin was generated, and luciferase activity evaluated as a readout for the extent of cell-associated focal spread. This reporter virus-based assay was then applied to screen plasma samples from 8400 HCMV-seropositive individuals for their inhibitory effect, including direct-acting antiviral drugs as positive controls. None of the plasmas reduced virus spread to the level of these controls. Even the top-scoring samples that partially reduced luciferase activity in the screening assay failed to inhibit focal growth when reevaluated with a more accurate, immunofluorescence-based assay. Selected sera with high neutralizing capacity against free viruses were analyzed separately, and none of them prevented the focal spread of three recent clinical HCMV isolates nor reduced the number of particles transmitted, as demonstrated with a fluorescent Merlin mutant. We concluded that donors with cell-to-cell-spread-inhibiting plasma are nonexistent or extremely rare, emphasizing cell-associated spread as a highly efficient immune escape mechanism of HCMV.


Asunto(s)
Anticuerpos Antivirales/inmunología , Donantes de Sangre , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Citomegalovirus/inmunología , Interacciones Huésped-Patógeno/inmunología , Evasión Inmune , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Citomegalovirus/genética , Citomegalovirus/aislamiento & purificación , Infecciones por Citomegalovirus/sangre , Infecciones por Citomegalovirus/transmisión , Expresión Génica , Genes Reporteros , Ingeniería Genética , Ensayos Analíticos de Alto Rendimiento , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...